Fractional step method for stochastic evolution equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Method for Fractional-Order Stochastic Delay Differential Equations

Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...

متن کامل

Stochastic evolution equations with fractional Brownian motion

In this paper linear stochastic evolution equations driven by infinite-dimensional fractional Brownian motion are studied. A necessary and sufficient condition for the existence and uniqueness of the solution is established and the spatial regularity of the solution is analyzed; separate proofs are required for the cases of Hurst parameter above and below 1/2. The particular case of the Laplaci...

متن کامل

On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays

In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory

متن کامل

Wavelet Galerkin Method for Solving Stochastic Fractional Differential Equations

Stochastic fractional differential equations (SFDEs) have many physical applications in the fields of turbulance, heterogeneous, flows and matrials, viscoelasticity and electromagnetic theory. In this paper, a new wavelet Galerkin method is proposed for numerical solution of SFDEs. First, fractional and stochastic operational matrices for the Chebyshev wavelets are introduced. Then, these opera...

متن کامل

Split-step Forward Milstein Method for Stochastic Differential Equations

In this paper, we consider the problem of computing numerical solutions for stochastic differential equations (SDEs) of Itô form. A fully explicit method, the split-step forward Milstein (SSFM) method, is constructed for solving SDEs. It is proved that the SSFM method is convergent with strong order γ = 1 in the mean-square sense. The analysis of stability shows that the mean-square stability p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 1998

ISSN: 0304-4149

DOI: 10.1016/s0304-4149(97)00079-3